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Abstract. The research in autonomous systems has been influencing the improvement in navigation of mobile vehicles 
and robots using artificial intelligence techniques. Agriculture and industry are instances of economical segments that 
may be benefit from the application of those scientific efforts. However, those systems demand control architectures 
that, most of the time, have a high degree of complexity when having tested by physical implementations. On the other 
hand, recent works confirm the eficacy of Petri nets for modeling real systems with concurrent activities as well as in 
planning and controlling of mobile robot tasks. The aim of this paper is to apply Petri nets for modeling and analysing 
concurrent behaviors present in a simple robotic navigation architecture, which was successfully tested in a mini-robot 
(Khepera), to apply as reference for implementation in a Autonomous Agricultural Vehicle (VAA). Available software 
for academic purposes were used for models development and proprieties analysis. The results point that using the 
formalism proposed for modeling, one is capable of determining control policies, analysing and identifying conflicts in 
concorrent robotic behaviors with ease in comparison to real implementations.  
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1. Introduction  
 

Nowadays, implementations in robotics are commonplace in the world. Mainly, in the industrial segment, robots 
have been used successfully as a powerful tool in order to reduce costs and improve efficiency through the last decades. 
However, there are other economical segments, such as agriculture, about which the research in robotics has been trying 
to focus. The development of platforms for mobile robots, which may be capable of operating in odd environments - 
subjected to different natural adversities - aims at providing new approaches for agricultural purposes. That is the case 
of the Autonomous Agricultural Vehicle project for which this work is related (Porto et al., 2003). 

 In order to provide a reasonable mechanism for a mobile robot to work as independent and accurate as possible, 
control architectures for navigation are necessary. Among the different architectures that are present in the accumulated 
bibliography of decades of research, those derived from the concepts of the hybrid deliberative/reactive paradigm are in 
the vanguard of the studies (Murphy, 2000). That two-layer paradigm consolidates the idea of behavior-based robots. A 
deliberative layer is responsible for planning the general task and subdividing it into subtasks. Besides, associated with 
the subtasks established, there are the possible behaviors to certain situations and environmental conditions. Based on 
the combined behaviors activated, a reactive layer is in charge of implementing which action is the most appropriate 
due to all the physical factors involved. Finally, the motor commands, which determine the mo tion of a robot, depend 
on that resulting behavior determination.  

A behavior-based architecture for navigational purpose using fuzzy logic was developed and successfully tested in a 
mini-robot platform (Khepera). However, that robotic implementation demands a way of representing the interaction 
among the data, which influence concurrently in mobile robot decisions. Being capable of knowing in advance the 
behavior of the mobile robot may facilitates the improvement of that and other architectures to come, especially, about 
the tasks to be carried out. A way of foreseeing the robotic architectures´ inner interactions, in turn, demands a 
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modeling tool, which may be capable of representing concurrent activities. Petri nets constitute a powerful formalism 
for that purpose.  

The applications of Petri nets in modeling and control of robotic tasks have been one of the foci of academic 
research through the last decades. This fact is easily perceived both in industrial robotics, for instance, with specific 
implementations in Flexible Manufacturing Systems (FMS), and in the development of autonomous robots for 
unstructured environments, such as mobile robots for agricultural purposes.  

Wang et al. (1991) develop a three-level structure for what he calls intelligent machines using Petri nets: 
organization, coordination and execution level. The organization level defines the necessary general procedures to a 
robotic motion, when a certain task is to be concluded. The coordination level works as a connection between the 
organization and the execution level, being subdivided into a dispatcher and several coordinators. The dispatcher 
collects the general task plans from the organization level, decompose them into control actions and distribute them to 
the correspondent coordinators with qualitative requirements. The coordinators, in turn, translate those control 
commands to operational instructions and, finally, send them to the appropriate devices for execution. The execution 
level carries out the instructions sending to the coordination level reports of the obtained results.  

In another paper, Wang and Saridis (1993), alongside the concepts of the hierarchical levels and the definitions of 
cost functions and reliability measures, define Petri nets tranducers (PNTs). This extension to Petri nets may work as a 
basic module for an analytical model, providing a formal description for individual processes in relation to the 
dispatcher and the coordinators. The PNTs are efficient for modeling situations that may involve concurrency and 
conflict for control and synchronization of operations. 

Lima and Saridis (1996) define a method to obtain the robotic task optimization. Several general tasks are defined in 
the organization level based on a hierarchical model, which is subdivided into levels that are capable of interacting with 
each other constantly. Those general tasks may be alternatives for the completion of a certain pre-defined aim, which is 
based on a pre-defined sequence of primitive tasks. These primitive tasks, in turn, are associated with the cost functions 
(J). Besides, in a coordination level, primitive actions for each primitive task are also defined with the association of 
cost functions values (J). According to Lima and Saridis (1996), minimizing the value for J will result in the choice of 
the optimal task. 

 Lima et al. (1998) go further and consolidate the concepts about robotic task theory with a set of several primitive 
tasks that are internally defined by primitive actions. The authors present results of successful emp irical 
implementations, illustrating examples of models in Petri nets. Milutinovic and Lima (2002) also implement this 
hierarchy between primitive tasks and primitive actions, obtaining satisfactory practical results. 

Caloini et al. (1998), in turn, present a new approach based on control nets. A control net is defined as a high level 
Petri net, specifically predicate-transition Petri net, applied to control systems validation during design stage. Four basic 
elements are defined for the control nets: events, states, data and parallelism. The control nets are implemented with 
fixed blocks that are used for model development. First of all, one has to determine specific functions for modeling. A 
case study validates preliminary implications. 

Similarly to the work by Caloini et al. (1998), Montano et al. (2000) use one of the interpreted Petri nets extensions: 
the Time Petri Nets (TPNs). The transition may fire or not in a determined interval of time which is established with a 
minimum value (X) and a maximum vale (Y), where Y is greater or equal to X. Using TPNs, one may be capable of 
modeling the occurrence of time-outs , periodical activities, as well as synchronization and concurrency better than 
Timed Petri Nets, in which the transition firing actually occurs after a pre-defined and fixed time value.  

The approach by Montano et al. (2000) for the problem of control policy of tasks presents a preliminary distinction 
of three types of transitions: transition-CODE, transition-TIME and transition-SYCO. The transition-CODE has to do 
with programming codes associated with activities, the transition-TIME models the occurrence of periodical events or 
time-outs and the transition-SYCO is in charge of synchronization and task control. These concepts are applied to 
modeling navigational tasks, especially those related to detection and obstacle-avoidance carried out by sensors (lasers) 
in path planning. From that pattern, processes associated with sensors are also defined – control and supervision 
processes – integrating them through a centralized and de-centralized approach. The authors conclude that the de-
centralized approach is more efficient for the concerning objective. 

Considering the papers presented in this section, this work incorporates the principles of the hierarchical 
organization as the one proposed by Wang et al. (1991) in order to provide a modularized approach. However, the 
association of the notion of time with the interaction among the subdivisions obtained diverges from Montano et al. 
(2000), since Generalized Stochastic Petri Nets (GSPNs) are applied instead of Time Petri Nets (TPNs). In addition to 
the use of GSPN theory, the main difference of this work from the ones discussed above is related to the application of 
Petri net formalism to a behavior-based architecture modeling, considering all of its concurrent aspects in order to make 
it practical for a real robotic task problem.  

This paper is subdivided in five subsequent sections. In section II, the principal aspects of the navigational 
architecture for a mini-robot platform and its results are discussed. Section III presents the formal definitions of a 
Generalized Stochastic Petri Net (GSPN) and the software, GreatSPN (GreatSPN, 2005), used for the construction and 
validation of the Navigational Control Architecture Model (NCAM). The NCAM is described in section IV and applied 
to a simple task problem in section V.  
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2. A Robotic Architecture for Navigational Purposes of a Mini-Robot   
 

One of the current problems of mobile robots’ navigation deals with the applications of the hybrid deliberative 
reactive architectures in outdoor environments. The conditions under which a robot is subjected may change very often. 
Consequently, the level of uncertainty increases. Therefore, fuzzy logic has been widely applied to behavior-based 
robots giving them the capacity to handle unusual situations in decision-making process.  

A navigational behavior for a mini-robot platform was delevoped using fuzzy logic. All the field tests were carried 
out in a mini-robot platform, the commercial robot Khepera . Briefly, it consists of a Khepera basic module, Khepera IO 
turret and a perceptual circuit mounted on the IO turret based on VT935G LDR sensors. The LDR sensors are located in 
front of the bottom circuit board of the base mo dule to read the reflect light by the floor following or looking for a path 
(dark line). There are also six front infrared (IR) sensors of the basic module, which are grouped in three pairs of 
adjacent sensors composing three perception areas: front, left and right. The IR sensors, in turn, are in charge of 
detecting obstacles. Figure 1 shows the Khepera-based platform.  

From the information captured by the LDR sensors, left and right, two crisp values are defined: the DIST and DIF 
values. The DIST crisp value determines how distant the LDR pair is becoming out of the path (intensity) – the 
minimum value between the LDRL and LDRR – and the DIF crisp value denotes which sensor is more distant from the 
path (direction). The crisp inputs for follow path behavior are composed of three fuzzy terms: far (FAR), medium 
(MEDIUM) and close (CLOSE) for DIST inputs, and negative (NEG), zero (Z) and positive (POS) for DIF inputs. The 
behavior outputs are composed of two values obtained by the centroid defuzzyfication method. Both outputs values are 
referred to each motor, left (L) or right (R). Three fuzzy terms are applied to describing the outputs: forward (F), stop 
(S) and backward (B).  

A similar approach using the two crisp values, DIST and DIF, is used for the avoid obstacle behavior procedure. 
However, the DIST value indicates the distance from a detected object and which group is the closest from the object 
(intensity and direction) – the maximum value between the left and right IR pair grouped (G) – and the DIF value 
denotes which sensor of the group is closer from the object, that is, the free and occupied spaces (direction).  

The fuzzy behavior arbitration, in turn, defines a hierarchy where the avoid obstacle behavior has the highest 
priority, follow path behavior has an intermediary priority and the straight in line behavior has the lowest priority. This 
approach depends on the IR or LDR sensor data about obstacle and path detections.  
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Figure 1. A top view of Khepera-based platform. 
 

3. Petri Nets 
 
3. 1. Formal Definitions 
 

Different extensions to Petri nets can be found in recent bibliography. Depending on the system to be modeled, the 
basic elements of Petri net assume different functions. That is the case of the interpreted Petri nets. Due to the approach 
of this work, the type of interpreted Petri net used may associate a specific distribution time delay, commonly an 
exponential distribution, with the transitions´ firing rule: the stochastic Petri nets (SPNs). Considering Murata (1989), 
suppose the delay d, associated with transition t, is a non-negative continuous random variable X with the exponential 
distribution function defined by Eq. (1).  
 

Fx (x) = Pr [X ≤  x] = 1 – e-λ
ι 

x             (1) 
 



Then, the average delay is given by Eq. (2), where λ is the firing rate of a transition t. 
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Based on the principles of a SPN, Ajmone Marsan et al. (1995) defines a Generalized Stochastic Petri Net (GSPN) 

model as a 10-tuple MGSPN = (P, T, Π, I, O, H, W, PAR, PRED, MP), where Mπ = (P, T, Π, I, O, H, PAR, PRED, MP) is 
a 9-tuple, the underlying Petri net model or a Petri net model with priority. W : T →  IR is a function defined on the set 
of transitions. Π : T →  IN is the priority function that maps transitions onto natural numbers representing their priority 
level. The priority level, actually, defines another important type of transition in a GSPN model: the immediate 
transition, which has also the property of firing as soon as it is enabled. Finally, M = (P, T,  I, O, H, PAR, PRED, MP) 
defines a Petri net model, where:  

- P is the set of places; 
- T is the set of transitions; 
- I, O, H : T →  Bag(P) , are the input, output, and inhibition functions, respectively, where Bag(P)  is the 

multiset on P; 
- PAR is a set of parameters; 
- PRED is a set of predicates restricting parameter ranges; 
- MP : P →  IN ∪ PAR is the function that associates with each place either a natural or a parameter ranging on 

the set of natural numbers. 
The research of Ajmone Marsan et al. (1995) culminated in the development of the software called GreatSPN 

(GreatSPN, 2005), which is capable of modeling and validating a GSPN. Considering its functional aspects, GreatSPN 
was used for modeling and analyzing properties of the Navigational Control Architecture Model (NCAM) proposed in 
this work. Simulation results and performance reports are not the focus of this present work. 
 
4. Modeling of a Mini-Robot Navigational Control Architecture using GSPNs 
 
4.1. Modularization of the robotic mobile system 
 

The first step of the modeling consists of the subdivision of the system into three main modules: the sensor module, 
the fuzzy logic behavior module and the motor command module. This procedure intends to specialize each module in a 
determined role, facilitating the understanding of the interaction among the different processes that might be present in 
the robotic mobile system.  

Firstly, the firing of transitions t1, t2, t3 and t4 of sensor module in Fig. 2 models the updating of data (qualitative data 
– presence or absence) from the four groups of sensors (IR or LDR). This data updating is defined by an exponential 
distribution function that leads to the definition of exponential transitions with their firings rates λ. For instance, nodes 
formed by p1-t1-p5 model the supply of data about obstacle and path distances and positions from the IR sensor located 
on the left of the mini-robot. Besides, nodes p2-t2-p6, p3-t3-p7 and p4-t4-p8 model the IR sensor located on the front, IR 
sensor located on the right and the LDR sensor, respectively. 

Secondly, the fuzzy logic behavior module of Fig. 2 models the decision-making process of the fuzzy behavior 
arbitration that has to take into account the hierarchy of priorities among the different behaviors. This idea is 
implemented by places p11 and p12 that receive tokens from the sensor module, modeling data information checked and 
supplied about obstacle and path distances and positions. Depending on these important data, the firing of transitions t7, 
t8, t9 and t10 defines which behavior is initiated. Since those transitions are immediate transitions, different values of 
Π  are defined, representing the association of the concept of priority level. 

Finally, the motor command module of Fig. 2 models the motion state of the mobile robot according to the fuzzy 
logic behavior decision (places p23, p25, p27, p29, p31, p33, p37, p39 and p41) and the behavior itself (p21, p29 and p35). 
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    SUBTITLES  

Places

Sensor Module             Fuzzy logic Behavior Module     Motor Command Module

P1: IR_L_Data              P11: Check_For_Obst                   Behaviors
P2: IR_F_Data              P12: Check_For_Path               
P3: IR_R_Data             P13: Avoid_Obst                           P21: Avoiding Obstacle
P4: IR_LDR_Data        P14: Avoid_Obst_L                      P29: Follow Path
P5: Check_IR_L           P15: Avoid_Obst_F                      P35: Going Straight
P6: Check_IR_F          P16: Avoid_Obst_R                  
P7: Check_IR_R          P17: Follow_Path                            Motor States
P8: Check_LDR           P18: Straight_In_Line
P9: Check_DIF            P19: Check_IF_Behavior              P23: FLFR - Going Forward                      
P10: Check_DIST                                                                 P25: FLSR - Turning Right
                                                                                                P27: FLBR - Rounding Right
                                                                                                P31: SLSR - Stop
                                                                                                P33: SLFR - Turning Left
                                                                                                P37: BLFR - Rounding Left
                                                                                                P39: SLBR - Turning Backward Left
                                                                                                P41: BLBR - Going Forward
 

Transitions

Sensor Module                                                 Motor Command Module

T1 (Exponential): Update_IR_L_Data           T19 à T40: Immediate Transitions
T2 (Exponential): Update_IR_F_Data
T3 (Exponential): Update_IR_R_Data
T4 (Exponential): Update_LDR_Data
T5 (Immediate): Get_DIF(IR)_DIF(LDR)
T6 (Immediate): Get_DIST(IR)_DIST(LDR)

Fuzzy Logic Behavior Module

T7 (Immediate): Obstacle_Found
T8 (Immediate): Obstacle_Not_Found
T9 (Immediate): Path_Found
T10 (Immediate): Path_Not_Found
T11 (Immmediate): Obstacle_Found_Left
T12 (Immediate): Obstacle_Found_Front
T13 (Immediate): Obstacle_Found_Right
T14 à T18: Immediate Transitions  

 
Figure 2. Sensor, fuzzy logic behavior and motor command modules: figures and subtitles. 

 
4.2. Integration of the mai n modules into a Navigational Control Architecture Model (NCAM)  

 
 All the three main modules have no functional meaning when analyzed independently. The integration of them 

constitutes the final conception of a Navigational Control Architecture Model (NCAM) and justifies its subdivision in 
specialized modules.  

First of all, the main control module is defined. It is in charge of associating the three main modules with respect to 
the rate of sensor data updating (sensor module), resulting in the most appropriate behavior (fuzzy logic behavior 
module) and the correspondent motor commands (motor command module). Figure 3 shows the interaction of all the 
main modules according to the main control module, describing a control policy.  

Another integrating module proposed is the fuzzy controller module. Based on the input data provided by the sensor 
module, the fuzzy controller module applies fuzzy logic mechanisms to convert them in another type of data, which will 
be used by the motor command module. Then, the mo tions of the mobile robot can be defined to certain conditions that 
are detected and interpreted.  

In Figure 4, the data interpretation is modeled qualitatively, since no data quantitative value is taken into account. 
This qualitative approach is based on the combinations of the output arcs from transitions ta to tc of DIST (FAR, MED, 
CLOSE) and from transitions td to tf of DIF (NEG, ZERO, POS) values for the obstacle avoidance and path behaviors. 
As a matter of fact, the uppermost model in Fig. 4 represents a summarized form of four models with their common 
connection with the other modules. One model for avoid left obstacle, two others for avoid front obstacle and for avoid 
right obstacle behaviors respectively, and the last one for follow path behavior. The composition of all the four models 
showed in Fig. 4 constitutes the fuzzy controller module. The indexes range of transitions and places may vary, as 
described by the subtitles of Fig. 4, due to the fact that different behaviors are represented. 

In Figure 5, places from pa to pi and transitions from tg to tp, derived from the fuzzy controller module of Fig. 4, 
model the resulting motor motion command (motor command module). Finally, in Fig. 6, the remaining elements and 
last connections conclude the Navigation Control Architecture Model (NCAM) composition.  It is also represented the 
final layout of NCAM.  
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Figure 3. Main control module. 
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SUBTITLES

Places

Pa: Neg-Far
Pb: Neg-Med
Pc: Neg-Close
Pd: Zero-Far
Pe: Zero-Med
Pf: Zero-Close
Pg: Pos-Far
Ph: Pos-Med
Pi: Pos-Close

P9: Check_DIF
P10: Check_DIST
Pj, j = 13: Avoid_Obst
Pj, j = 17: Follow_Path
Pl, l = 14: Avoid_Obst_L
Pl, l = 15: Avoid_Obst_F
Pl, l = 16: Avoid_Obst_R

Transitions (Immediate)

Ta, a = 46: Neg_Avoid
Ta, a = 52: Neg_Follow
Tb, b = 47: Zero_Avoid
Tb, b = 53: Zero_Follow
Tc, c = 48: Pos_Avoid
Tc, c = 54: Pos_Follow

Td, d = 49: Far_Avoid
Td, d = 55: Far_Follow
Te, e = 50: Med_Avoid
Te, e = 56: Med_Follow
Tf, f = 51: Close_Avoid
Tf, f = 57: Close_Follow  

 
Figure 4. Fuzzy controller module. 
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Figure 5. Fuzzy controller module and its connections to the motor command module. 
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Figure 6. The Navigation Control Architecture Model (NCAM): the final integration among the different modules. 
 
5. Application of the Navigation Control Architecture Model to a simple robotic task problem 

 
The Navigation Control Architecture Model (NCAM) constitutes a live, bounded and reversible GSPN model, as 

validated by GreatSPN.  
A robotic task can be subdivided in a sequence of sub-tasks and these, in turn, will take place according to the 

behaviors dependent on the successive sensor data. Therefore, NCAM can be applied to a simple task problem in which 
obstacle avoidance and following path leads the robot to change its own motion commands.  

A simple robotic task was applied to NCAM. It consists of four sub-tasks. Figure 7 shows a resultant modeling of 
the robotic task problem with NCAM. Initially, the robot is in standby. This state is modeled by the presence of one 
token in p54. The firing of transition t58 means the start of a task. The sub-task 1 starts  when the robot starts going 
straight, that is, transition t59 fires. Since a path is detected (the firing of transition t9), the sub-task 2 begins, that is, the 
robot keeps following the path. The end of sub-task 2 and the start of sub-task 3 take place once the path is no longer 
present and again, the robot goes straight (the firing of transition t60). Once a path is detected (the firing of transition 
t63), the sub-task 3 ends and, finally, sub-task 4 begins, that is, the robot follows the path. The end of sub-task 4, which 
means the path is not detected any more (the firing of transition t65), represents the end of the entire task and the mobile 
robot stops. Concurrently, the obstacle avoidance system is always checking whether an obstacle is present or not. 
Since, an obstacle is detected (the firing of transition t7), the avoid obstacle behavior takes place. Otherwise, if no 
obstacle is found (the firing of transition t8), the robot behavior may oscillate between the follow path and straight in 
line behaviors.  
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P55: Start_Task
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P62: Sub_Task_4
P63: End_Sub_Task_4_End_Task_Stop_Robot

Transitions

T7: Obst_Found 
T8: Obst_N_Found
T9: Path_Found, End_Sub_Task_1, Start_Sub_Task_2
T10: Path_N_Found_1
T59: Start_Sub_Task_1
T60:  Path_N_Found, End_Sub_Task_2, Start_Sub_Task_3
T61: Path_Found_1
T62: Path_N_Found_2
T63: Path_Found, End_Sub_Task_3, Start_Sub_Task_4 
T64: Path_Found_2
T65: Path_N_Found, End_Sub_Task_4, End_Task, Stop_Robot

 
 

Figure 7. The robotic task model and NCAM integration. 



In Figure 7, transitions t60  to t65 are also connected to the sensor module by places p9 and p10 the same way 
transitions t7 to t10 . This connection alternates the double direction of the arcs with respect to the behavior that will take 
place. That is the special case of the straight in line behavior and is clearly depicted in Fig. 6. This approach enunciates 
the fuzzy logic behavior module extended due to the application of NCAM to a simp le robotic task problem. 
 
6. Conclusions  
 

The Navigation Control Architecture Model (NCAM) validates the behavior-based architecture developed for a 
mini-robot platform. NCAM also represents the effort of a research which deals with the development of a navigation 
control archicture for an Autonomous Agricultural Vehicle (VAA) (Porto et al., 2003). 

Considering the issue of the behavioral priority level, NCAM reveals the concurrent procedure among the obstacle-
avoidance and any other possible behavior. Since, NCAM is a Petri net model, concurrency can be easily implemented.  

Another important feature of NCAM is with respect to its way of integrating the several modules used to separate 
the modeling. Since those modules are different constituent parts of NCAM, the different interactions between a mobile 
robot and its environment can be implemented, simulated and also extended.  

Another aspect is that considering the potential of modeling and simulation of a GSPN model, once the values for 
λ and Π can vary, NCAM intends to demonstrate its capability to predict, probabilistically, the different behaviors and 
motions about which a robot will be subjected to complete its tasks.  

Even though the use of modularization is well applied to this paper – considering the fact that NCAM is a GSPN 
model without any other sophisticated approach – the amount of elements, such as places and transitions, is increased 
considerably. This main disadvantage of using low-level Petri nets has been overcome with the use of high level Petri 
nets. This approach constitutes the next step of this research. 
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